

Synthesis of 3,6-Disubstituted Tetrahydro-S-triazolo[3,4-b][1,3,5]thiadiazines

Zhongyi Wang*, Tianpa You

Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, P. R. China

Haijian Shi, Haoxin Shi

Department of Chemistry, Anhui Normal University, Wuhu 24100, P. R. China

Received: 25 September 1996 / Accepted: 22 November 1996 / Published: 18 December 1996

Abstract

Ten novel 3,6-disubstituted tetrahydro-S-triazolo[3,4-b][1,3,5]thiadiazines **2** have been synthesized by the double Mannich reaction of 3-aryl-5-mercapto-1,2,4-triazole with various aromatic amines and formaldehyde in the presence of ethanol-HCl solution. The structure of these compounds was determined by elemental analysis, IR, NMR and MS. Their antibacterial activities against *E. coli*, *B. bob* and *S. aureus* have been tested.

Keywords: Mannich reaction, 3-aryl-5-mercapto-1,2,4-triazole, 3,6-disubstituted tetrahydro-*S*-triazolo[3,4-b][1,3,5] thiadiazines.

Introduction

In recent years, some fused heterocycles have been found to possess many unique properties in synthesis of condensed S-triazole heterocycles, and have attracted a great deal of attention from chemists and pharmacologists because of their broad spectra of biological activities such as antifungal [1], antibacterial [2], hypotensive and CNS depressant [3] activities. Even though there are many re-

ports [4-6] on the synthesis of triazolo[3,4-b][1,3,4]thia-diazole derivatives, there has been no report on the synthesis of 3,6-disubstituted tetrahydro-S-triazolo[3,4-b] [1,3,5]thiadiazine. A triazo-thiadiazole system may be viewed as a cyclic analog of two very important components, which display diverse biological activities. These results inspired us to synthesize a system which combines these two biolabile components in a ring together to give the title structure 2 for screening their antibacterial activities.

* To whom correspondence should be addressed. Mailing address: Room 210, Apartment #1, North Campus, University of Science and Technology of China, Hefei 230026, P. R. China 90 Molecules 1996, 1

Table 1. 3,6-Disubstituted	tetrohydro-S-triazolo[3,4-b]
[1,3,5]thiadiazines 2a-j .	

Compound	R'	R"	Yield (%)	M.p. (°C)
2a	<i>p</i> -O ₂ NC ₆ H ₄	Ph-	85	275 (decomposed)
2 b	$p-O_2NC_6H_4$ -	<i>p</i> -CH ₃ C ₆ H ₄ -	87.82	290 (decomposed)
2c	$p-O_2NC_6H_4$ -	m-O ₂ NC ₆ H ₄ -	80.92	250-251
2d	p-O ₂ NC ₆ H ₄ -	(CH ₃) ₃ CH-	74.63	270 (decomposed)
2e	m - $O_2NC_6H_4$ -	$p\text{-CH}_3\text{C}_6\text{H}_4$ -	52	294 (decomposed)
2 f	m - O_2 N C_6 H ₄ -	Ph-	77	178 (decomposed)
2 g	Ph-	Ph-	61.22	204-205.5
2h	Ph-	o-CH ₃ C ₆ H ₄ -	84.42	198-199
2i	m-Py-	Ph-	81.2	213-214.5
2 j	o -CH $_3$ OC $_6$ H $_4$ -	o-O ₂ NC ₆ H ₄ -	50	217-218

Results and Discussion

The required 3-aryl-5-mercapto-1,2,4-triazole derivatives (1) were prepared according to the method in the literature [7]. Compound 1 contains NH and SH groups. The di-Mannich reaction with aromatic amines and a formaldehyde solution in the presence of ethanol-HCl solution at 45-65 °C was used to produce the Mannich base in good yields. The synthesis route is outlined in Scheme 1:

Scheme 1

The most reactive systems appeared to be those for which both R' and R" were aromatic and those for which R" was aliphatic and R' aromatic. However, if R" contained an electron donating group, it was introduced hydroxyl methyl group easily. The reaction was also influenced by temperature. If the reaction was run at the refluxing temperature of the reaction mixture, no Mannich base 2 could be isolated. The rate of reaction decreased at low temperature, the most suitable temperature is 45–65 °C.

The reaction mechanism is proposed as follows (Scheme 2).

The structures of compounds **2a-j** were determined by elemental analysis, IR, NMR and MS. For example, from the IR spectral data of **1** characteristic peaks at 2560–2859 cm⁻¹ and 3093–3427 cm⁻¹ were found. These peaks were assigned to SH and NH. However, the peaks of SH and NH disappeared when **1** reacted with aromatic amines and cyclized to compound **2** and the characteristic peak of C-S-C appeared at 618–725 cm⁻¹. Comparing the ¹H-NMR spectra of **1** with **2**, we could see that the noticeable change is that the signals of the imino proton at 13.70–14.20 ppm and the mercapto proton at 13.20–13.75 ppm disappeared. The chemical shift of methylene protons of **2** was at lower field than normal methylene. This was due to the influence of deshielding effect in *S*-triazolo[3, 4-b][1, 3, 5]thiadiazine.

Analyzing the MS spectra of **2a-j** which contained many heteroatoms, we found that the molecular ion peaks of the compound **2a-j** have a high intensity.

Ten compounds were screened for their antibacterial activity against *B. bob*; *S. aureus* and *E. coli* at 800,100 and 50 ppm concentrations. The results showed that compounds **2a**, **2b**, **2c**, **2e**, **2f**, **2h** and **2j** have significant activity. Detailed results will be described elsewhere.

Experimental Section

The melting points were recorded on an X4 microscopic melting point apparatus and uncorrected. Elemental analyses were determined on a PE-2400 instrument, IR spectrum on an FTS-40(KBr) and ¹H-NMR spectra on a Brukar AM (100 MHz) instrument (DMSO-d₆). MS spectra were recorded on a ZAB-HS (EI, 70ev) instrument.

Molecules **1996**, *1* **91**

Table 2. Properties of 3,6-disubstituted tetrohydro-S-triazolo[3,4-b][1,3,5]thiadiazines **2a-j**

No.	Ana	lysis		IR (cm ⁻¹)	¹ H-NMR (δ, ppm)	MS (%)
		Found	Calc			
2a	C H N	49.78 3.21 22.06	49.99 3.15 21.87	3035, 2854, 2673 1662, 1614, 1435 1366, 1467, 1246 853, 732, 618	8.24–8.38 (4H, m) 7.31–8.22 (5H, m) 6.49 (2H,s) 5.26 (2H,s)	340 (M,1.4), 325 277, 237, 221 207, 134, 65
2b	C H N	57.49 4.34 19.54	57.77 4.28 19.82	3095, 3031, 2923 2798, 1673, 1604 1570, 1384, 880 809, 1265, 725	8.35–8.25 (4H,m) 7.35–7.12 (4H, m) 5.97 (2H, s) 5.57 (2H, s) 2.23 (3H, s)	353 (M,25), 323 234, 176, 177, 119, 75
2c	C H N	49.8 3.20 21.60	49.9 3.15 21.87	3078, 2824, 2729 1628, 1579, 1527 1455, 1348, 793 732, 1267, 690	8.26–8.33 (4H, m) 7.61–8.1 (4H, m) 6.20 (2H, s) 5.75 (2H, s)	384 (M,65), 354 236, 222, 177 176, 150, 104
2d	C H N	51.04 4.87 23.23	51.18 4.95 22.94	3071, 2964, 2853 1697, 1627, 1576 1481, 1519, 1348 868, 1293, 705	8.14–8.38 (4H, m) 5.40 (2H, s) 6.22 (2H, s) 1.22 (6H, d) 3.33 (1H, m)	306 (M, 0.69) 223, 191, 177
2e	C H N	57.98 4.19 19.64	57.77 4.28 19.82	3090, 3072, 2910 2822, 2793, 1675 1635, 1589, 1517 1347, 803, 734 1280, 678	8.93–8.22 (4H, m) 7.6–7.11 (4H, m) 5.6 (2H, s) 6.52 (2H, s) 2.03 (3H, s)	353 (M, 18), 236 235, 207, 177 119, 91, 75
2f	C H N	56.76 3.71 20.93	56.62 3.86 20.64	3030, 2859, 2764 1660, 1613, 1524 1433, 1470, 1372 1247, 693	7.17–6.91 (5H, m) 7.97–7.51 (4H, m) 6.52 (2H, s) 5.47 (2H, s)	339 (M, 18), 307 236, 177, 147 135, 118, 57
2g	C H N	65.42 4.68 19.31	65.28 4.97 19.03	3063, 2970, 2936 2790, 1628, 1517 1450, 1358, 810 765, 1280, 705	7.55 (5H, s) 7.40 (5H, s) 6.20 (2H, s) 5.66 (2H, s)	294 (M, 3), 235 207, 191, 177 118, 77
2h	C H N	66.37 5.38 18.41	66.21 5.23 18.17	3040,3020,2912 2785, 2720, 1633 1504, 1480, 1352 1271, 710, 763 805	7.89 (5H,s) 7.65–6.83 (4H, m) 6.37 (2H, s) 5.40 (2H, s) 2.23 (3H, s)	308 (M, 0.86) 278, 206, 178 104, 77
2i	C H N	61.21 4.26 23.96	60.99 4.44 23.71	3041, 2845, 2909 1660, 1600, 1546 1452, 1372, 1505 1246, 701	7.74–6.82 (5H, m) 9.14–7.95 (4H, m) 6.45 (2H, s) 5.25 (2H,s)	295 (M, 0.61) 235, 207, 179 147, 106
2ј	C H N	55.35 4.17 18.68	55.27 4.09 18.96	3025, 2953, 2853 2764, 1611, 1512 1480, 1450, 1341 822, 738, 1275 663	8.85–8.0 (4H, m) 7.65–7.45 (4H, m) 3.95 (3H, s) 6.75 (2H, s) 5.75 (2H, s)	369 (M, 2), 340 207, 177, 119 91, 77

92 *Molecules* 1996, 1

$$\begin{array}{c} H \\ H \\ O \\ H \\ \end{array} \begin{array}{c} N-N \\ N-N \\ OH \\ HN \\ R'' \end{array} \begin{array}{c} N-N \\ N-N$$

Scheme 2

General procedure for the preparation of 3,6-disubstituted-S-triazolo[3,4-b][1,3,5]thiadiazine

The aromatic amine (10 mmol) was dissolved in absolute EtOH (10 ml) then ethanol-HCl (10 ml), formaldehyde solution (37%) (3 ml) and 3-aryl-5-mercapto-1,2,4-triazole (10 ml) was added. The mixture was stirred at 40-50 °C for 3 h then at 65-70 °C for 7-8 h and allowed to stand overnight. The precipitate was filtered, washed with 10% Na₂CO₃ and 95% EtOH. The pure product was obtained by recrystallization from acetone/95%EtOH (1:2), 95% EtOH/Et₂O (1:1), or acetone/ethylacetate (1:1).

Acknowledgement. This work was supported by the Natural Science Foundation of Education Commission of Anhui Province.

References

- Pant. M. K.; Durgapal, R; Joshi, P. C. *Indian. J. Chem.* 1983, 22B, 712.
- 2. Eweiss, N. F.; Bahajaj, A. A. J. Heterocycl. Chem. **1987**, 24, 1173.
- 3. Mody, M. K.; Prasad, A. A.; Ramalingam, T.; Sattur, P. B, *J. Indian Chem. Soc.* **1982**, *59*, 769.
- 4. Zhang, Z.-Y.; Chen, X. Huaxue Xuebao, 1991, 49, 513.
- Kothari, P. J.; Singh, S. P.; Parmar, S. S.; Stenberg, V. I. J. Heterocycl. Chem. 1980, 17,1393.
- 6. Bano, Q.; Tiwari, N.; Giri, S.; Nizamuddin, *Indian, J. Chem.* **1992**, *31B*, 714.
- 7. Wang, Z.-Y., Shi, H. -J., Shi, H.-X. *Youji Huaxue*, in press.

Supporting samples are available from MDPI: **2a**, MDPI 671; **2b**, MDPI 672; **2d**, MDPI 676; **2e**, MDPI 678; **2g**, MDPI 682; **2a**, MDPI 683; **2i**, MDPI 689.